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We study theoretically the flow of a viscous incompressible fluid in a parallel-walled 
channel: the flow is driven by uniform steady suction through the porous and 
accelerating walls of the channel. Previous authors have discussed special cases of 
such flows, confining attention to  flows which are symmetric, steady and two- 
dimensional; a similarity form of solution is assumed, as used by Berman and 
originally due to Hiemenz, to  reduce the NavierStokes equations to  a nonlinear 
ordinary differential equation. We generalize their work by considering asymmetric 
flows, unsteady flows and three-dimensional perturbations. By use of numerical 
calculations, matched asymptotic expansions for large values of the Reynolds 
number, both positive and negative, and the theory of dynamical systems we find 
many more exact solutions of the Navier-Stokes equations, examine their stability 
and interpret them ; although much of the theory is for the general case, most of the 
numerical calculations are for the case of zero suction. I n  particular we show that 
most of the previously found steady solutions are unstable to antisymmetric two- 
dimensional disturbances. This leads to  a pitchfork bifurcation, stable asymmetric 
steady solutions, a Hopf bifurcation, stable time-periodic solutions, stable quasi- 
periodic solutions and chaos in succession as the Reynolds number increases from 
zero, and a pitchfork bifurcation, stable asymmetric steady solutions, a Hopf 
bifurcation, periodic solutions, chaos via period doubling, other periodic solutions 
and chaos in succession as the Reynolds number decreases from zero. 

1. Introduction 
The so-called exact solutions of the NavierStokes equations have been of 

practical importance and theoretical interest for a long time. Such solutions range 
from simple and analytic to  complicated three-dimensional and numerical ones. 
Well-known examples are Poiseuille flow in a pipe, two-dimensional stagnation-point 
flow and uniform flow past a sphere. The essential difference of the last of these is 
that  the solution depends on a parameter, namely the Reynolds number ; also, as in 
the second example, the solution is found by numerical means. In  the present paper 
we shall examine other exact solutions of the Navier-Stokes equations, which 
describe two-dimensional flows in a channel. 

The steady laminar flow of an incompressible viscous fluid along a channel with 
rigid porous walls has already received much attention. Berman (1953) assumed a 
similarity form of solution and reduced the problem to a single nonlinear fourth- 
order ordinary differential equation with two boundary conditions a t  each wall. This 
exact solution of the Navier-Stokes equations has been generalized and extended by, 
e.g., Terrill (1964), Durlofsky & Brady (1984) and Zaturska, Drazin & Banks (1988, 
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henceforth referred to as ZDB). The similarity form has a long history-it was 
originally applied by Hiemenz to flow a t  a stagnation point, and has most recently 
been applied by Stuart (1988) to the development of a singularity in the flow of an 
inviscid fluid a t  a finite time. 

In  the present paper we formulate a closely related problem, the flow of a viscous 
incompressible fluid driven along a channel with porous uniformly accelerating rigid 
walls. We shall use the same similarity form of solution as Berman: the resulting 
differential equation is identical to that for porous-channel flow, only the boundary 
conditions differ. The flow with zero suction was previously examined by Brady & 
Acrivos (1981), who also made use of the same similarity form. Moreover they 
described the importance and physical context of the problem, and found many 
interesting results. Here we find new solutions, periodic in time as well as steady, and 
examine the stability of these exact solutions, finding a rich structure of multiple 
equilibria. Our investigation, although concerned principally with the case of zero 
suction, closely parallels the work of ZDB, so we shall state the problem without 
more ado. 

The problem is modelled as follows. The channel walls have equations y = f h  
and the velocity components of a two-dimensional flow are u, v in - 00 < x < co, 
- h < y < h. The stream function $ satisfies the vorticity equation 

where u = a$/ay, v = -a$/ax, t represents the time and v is the kinematic viscosity 
of the fluid. The boundary conditions corresponding to porous accelerating walls are 

u = E x ,  v = k V  a t  y = f h .  (1.2) 

We henceforth non-dimensionalize length with respect to h, and time with respect to 
( E  + V/h)-l ,  introducing the Reynolds number defined by R = (V+ Eh) h/v .  We shall 
see soon that when V+ Eh = 0 the problem becomes a limiting case of a more general 
formulation. 

Similarity solutions of Berman's form 

$ ( X l  Y ,  t , R )  = M Y ,  t , m  (1.3) 

are sought, for which the corresponding velocity components are 

u = xfy,  v = -f. 
The vorticity equation becomes 

f Y Y t  = R T Y Y Y Y  + f f Y Y Y  - f Y  f Y Y  (1.5) 

f = T( l -x ) ,  fy  = x at y = k1, (1.6) 

with boundary conditions 

where x = E h / ( V + E h ) .  An initial condition is required to pose the problem for 
f(y, t ,  R ) ,  but we delay consideration of it until $7 .  Steady solutions correspond to 

(1.9) 

where the vector operator B is defined by BF = [F(  - i) ,  F'( - l ) ,  F(l), F'(1)IT and a 

T BF = [l-xt x, - 1 f X 7  XI 7 
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prime denotes differentiation with respect to y .  The parameter x may take any real 
value, and the case x = 0 represents steady flow in a porous channel (see ZDB for 
history and details) and that of x = 1 the accelerating-wall flow investigated by 
Brady & Acrivos (1981). The special case V+Eh = 0 corresponds to x infinite and 
represents either suction with the wall moving towards the origin or injection with 
the wall moving away from the origin. We shall collect the results for this case in the 
Appendix. It is opportune also now to introduce the operators B, and BA such that 

BSF = [F( - l),F( - l), F(0),F”(O)IT (1.10) 

and BAF = [F( - l ) ,F’ ( - l ) ,F’ (0 ) ,B“’ (O) ]T .  (1.11) 

F -t- R ( F F  - F f 2 )  + p = 0, (1.12) 

It is often more convenient to use the integral of (1.8), 

where p = R{x2 + ( 1  -x)F”( 1)) -F”’( 1) is the constant of integration. 
The basic flow governed by (1.8) subject to symmetric boundary conditions 

B,F = [0, 1,  0, 0IT with x = 1 has been studied by Brady & Acrivos (1981). We first 
summarize their results. For 0 < R < R, there is a single solution, while for R > R, 
there are three solutions, where R, % 310. The multiple solutions correspond to 
distinct values of the integration constant p but all have the same skin friction 
F(1,  R)  for given large R.  The single solution is said to be of type I, the other two 
of types I1 and 111. Durlofsky & Brady (1984) found, but did not present directly, 
solutions of type I for R < 0, their principal concern being with spatial growth of 
disturbances. In our study we have concentrated on solutions of type I and their 
bifurcations because we anticipate that the flows of types I1 and 111 are unstable (cf. 
ZDB) : the symmetric solutions of type I are the only set of solutions that exists for 
all values of R. A plot of the state variable F”(1, R)  versus R for solutions of type I 
is presented in figure 1. 

In  order to examine the temporal stability of such steady flows for general x we 

(1.13) write 

linearize (1.5) for small g and seek normal modes with 

S(Y, t ,  R)  = Ry, R)  + g(y1 tl R ) ,  

9(Y, t , m  = eStG(y,R). (1.14) 

Then an eigenfunction G satisfies 

G’V+R(FG’” -F‘(J”-FG +F’”G) = RsG”, (1.15) 

BG = 0, (1.16) 
for eigenvalue s. A specified basic flow with V+Eh > 0 is unstable if Re (s) > 0 for 
at least one eigenvalue, and one with V+Eh < 0 is unstable if Re (s) < 0 for at least 
one eigenvalue (because, with the timescale (E+V/h)-l we have chosen, time is 
apparently reversed when V+Eh < O ) .  The case V+Eh = O  is discussed in the 
Appendix. For a symmetric flow, F is an odd function of y and so each eigenfunction 
G is either an even function (i.e. an antisymmetric mode) or an odd function of y (i.e. 
a symmetric mode); then in effect we may solve (1.15) with either boundary 
conditions BA G = 0 or B, G = 0 respectively, for which we denote the eigenvalue by 
s = qn or s = r ,  respectively for n = 1, 2, . . . . 

The spatial stability of the steady solutions for x = 0 and 1 has been examined by 
Durlofsky & Brady (1984), who essentially expressed 

(1.17) w, Y ,  Rf  = XP(Y7 R )  + h(G Y,R), 
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linearized (1.8) for small h, considered spatial modes of the form 

h(x, y, R) = dH(y,  R) (1.18) 

and neglected small terms as x+ CQ. This gives rise to the problem 

P”+R(FH”’-F”H) = AR(FH-F”‘H) ,  (1.19) 

BH = 0, (1.20) 

for eigenfunctions H with eigenvalues A. Durlofsky & Brady considered only 
symmetric modes ; they found that when x = 1 there are only negative eigenvalues for 
R < 0, only positive eigenvalues for 0 < R < 11.0 and both positive and negative 
eigenvalues for R > 11.0. All their negative eigenvalues satisfy A < -2, all the 
positive ones A > 1. It is noteworthy that the spatial eigenvalue problem (1.19), 
(1.20) coincides with the temporal eigenvalue problem (1.15), (1.16) when there is 
neutral stability, i.e. when A = 1 and s = 0. 

We shall describe some asymptotic properties of the steady flows, as defined by 
(1.8) and (1.9), and their eigenvalues as R -+ 0 and R + f co in 92. In  $3  we present 
for the case x = 1 numerical results about the steady solutions and their instabilities. 
In  particular we find that the well-known steady solutions in which F ( y )  is 
symmetric about the centreline of the channel become unstable and bifurcate into 
pairs of asymmetric solutions a t  two critical values of the Reynolds number, one 
positive and one negative ; these asymmetric solutions in turn become unstable as IRI 
increases further. Section 4 comprises a local analysis of the bifurcations of all steady 
solutions for arbitrary 2. In 95 we discuss for the case x = 1 asymptotic properties 
of the asymmetric solutions and of the eigenvalue problems associated with them. 
Some properties of three-dimensional instability of the steady two-dimensional 
solutions are presented in $6. I n  $7 the results of direct numerical integration of the 
partial differential system (1.5), (1.6) with x = 1 are described : these confirm many 
of our previous results and show many bifurcations along the route to chaos. 

- 100 0 100 200 300 
R 
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It may help the reader of this long and technical paper to describe its spirit in one 
paragraph. Although the experimental realization of the theoretical model with two 
accelerating walls does not seem feasible, that in which only the bottom wall of the 
channel is accelerating might, with difficulty, be achieved by moving a very dense 
liquid, such as mercury, over a suitably shaped bed. In any case, the model is 
relevant to other flows such as flow near a stagnation point and flow of a light fluid 
near a dense one. Also the model more importantly describes a special class of exact 
solutions of the Navier-Stokes equations which offers a paradigm for many aspects 
of transition to turbulence. Indeed the problem is of didactic value for its 
encapsulation of the theory of hydrodynamic instability of flow with symmetry and 
consequent symmetry breaking. The symmetry group of the problem corresponds to 
the symmetry of the channel in its centreline. The dynamics of the transition and 
chaos described in $ 7  is crucially influenced by the existence of the unstable steady 
and time-periodic flows elucidated a t  length in Sp2-5. However, if the reader is 
impatient to learn about the appearance of chaos then he or she may proceed a t  once 

The problem has many solutions with an interesting structure and many kinds of 
bifurcation arise ; as a result it was found necessary to use what may appear to be a 
complicated notation for the values of R a t  the bifurcation points. I n  view of this, the 
notation is summarized here. We first recall that the steady symmetric flows are 
classified as being of types I, I1 or 111. The values of R where steady asymmetric 
flows first bifurcate from steady symmetric flows of type I as JRJ increases are 
denoted by R-,, R, (pitchforks) : a subscript minus denotes, here and henceforth, that 
the value of R is negative. Continuing along the type I branch with R > 0 we use R,, 
R, for the turning points distinguishing type I1 and type 111 flows ; the values of R 
a t  Hopf bifurcations, where time-periodic flows bifurcate from steady asymmetric 
flows, are denoted by R-ll and Rll;  the (negative) values of R where the periods of 
flows double are denoted by R(l), R@), ... . Finally, we denote by L1, I, the types of 
asymmetric steady flows bifurcating a t  R-l, R, respectively, and in addition denote 
by I:,, 1; the ‘reflected’ flows in the centreline of the channel, corresponding to the 
symmetry of the problem. 

to $ 7 .  

2. Asymptotic results for small and large R 
I n  $3 we shall describe the numerical integration of the equations for the basic 

steady flow F and the eigensolutions G ,  s of its temporal modes, but it is convenient 
first to use some asymptotic methods. By so doing we find results about the basic 
flow and its eigensolutions not only to compare with the numerical results but also 
to be continued numerically as JR1 increases from zero and to join the numerical 
results as JRJ decreases from infinity. 

2.1. Analysis for small R 
Assuming the expansion 

substituting it into the problem (1.8), (1.9) for steady flows, and equating sucessive 
powers of R, we find a t  length (following Terrill 1964 and Brady 1981) that 

F(y,  R )  = Fo(y) + RF,(y) + . . . as R + 0, (2.1) 

F o b )  = b(Y2 - 3) + XY, FAY) = &(Y6 - 3Y2 + 2), * * * (2.2) 

For each value of x this gives the unique steady solution, namely the symmetric 
solution of type I,  for small values of R. 
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At the same time we may also expand the eigensolution (Watson 1987 and ZDB) 

G(y,R) = G,(y)+RG,(y)+ ..., s(R) = R-ls-l+s,+Rsl+... as R+O, (2.3) 

substitute expansions (2.1) and (2.3) into the eigenvalue problem (1.15), (1.16) and 
equate successive powers of R. This a t  length gives the antisymmetric modes (with 
s = qn),  where 

in the form 

q,(R) = - n2n2/R - 21/8n2n2 + $( 1 - x) + O(R), 

and G(y,R) = cosnxy-(-l)n+O(R) as R+O; (2.4) 

and similarly it gives the symmetric modes (with s = r,), where 

r,(R)= -p;/R+55/8&+%(1 -x)+O(R), 

G(y,R) = y-sin(p,y)/sinp,+O(R) as R+O, (2.5) 

and pu., is defined as the nth positive root of t a n p  = p (which is tabulated by 
Abramowitz & Stegun (1964, p. 224)). 

Brady (1981) and Watson (1987) give many further details for the case x = 1, and 
ZDB for the case x = 0, showing how well these asymptotic results agree with direct 
numerical calculations. 

2.2. Analysis for large positive R 
The assumed structure of the asymptotic solutions below is based on the literature 
(especially Terrill 1964 and Brady & Acrivos 1981), numerical results, and trial and 
error. For brevity we shall merely summarize the results without detailed 
justification, the essential justification being that the assumptions lead to  a self- 
consistent asymptotic solution and that a comparison of numerical and asymptotic 
results gives confidence in the validity of the structure of the solution. We have the 
two sub-cases x = 1 and x P 1. 

2.2.1. x = 1 
When x = 1 the steady symmetric flows of type I have a boundary layer of 

thickness of order of magnitude R-a near each wall and are essentially inviscid 
elsewhere when R is large. In  mathematical terms we assume that there is an outer 
solution of the form F(y, R)  = R-h@(y, R), where 

@(y, R) = @,,(y) + R-$Gl(y) + . . . as R + 00 for fixed y P f 1 (2.6) 

and @ satisfies the outer boundary conditions that 

@( - 1) = 0 to leading order and @(0) = @"(0) = 0. (2.7) 

7 = R+(l +y),  (2.8) 

$+(v,R) = $i(q)+R-i$:(~)+ ... as R+co for fixed 7,  (2.9) 

$+(0) = 0, $+'(0) = 1. (2.10) 

We also assume that there is an inner solution of the form F(y, R)  = R-+$+(y, R),  
where 

and #+ satisfies the inner boundary conditions that 

There will, of course, be a similar boundary layer near y = 1. Finally, we assume that 
the inner and outer solutions match at the edge of the boundary layer, i.e. that 

lim @(y, R) - lim $+(7, R )  
Y 1 0  7 t m  

as R + CO. (2.11) 
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With these assumptions (1.8) or (1.12) may be solved a t  successive orders of 
approximation. We find a t  length that 

@ O W  = -Y, (2.12) 

$:(?I) = 1-e-7, (2.13) 

(2.14) @l(Y) = - (1  + 1) Y 

and 

I = [e-' {( 1 + s)-l+ ( 1 + - 8-l) + sP1] ds = 1.6126. s: where 

Watson (1987) gives further details of the asymptotic analysis and its successful 
comparison with direct numerical integration of the problem (1.8), (1.9). In  
particular, the result 

F ( 1 )  = Ri+1/2e+O(R-i) as R +  co (2.16) 

gives the asymptote to the curve for the solution of type I in figure 1. 
Brady & Acrivos (1981, $2.4) discuss some asymptotic results as R-t  co for the 

solutions of types I1 and 111. 
We may use the asymptotic solution obtained above to investigate the eigenvalues 

corresponding to type I solutions for large positive R. Replacing F by -uy, where 
a = R-i+2.6126RP1+ ..., we approximate (1.15) for the eigenfunctions by 

P'-RayT*"-R(s-a) r = 0, (2.17) 

where f ( y ,  R) denotes the inviscid representation of G(y, R). The boundary conditions 
a t  y = 0 are r = r" = 0 for the symmetric, and r = r"' = 0 for the antisymmetric, 
modes. The general solution of (2.17) is 

(2.18) 

where A ,  B are constants and U ,  V are the parabolic cylinder functions. We assume 
here that the normalization (e.g. G(-1 )  = 1 in our numerical work) of the 
eigenfunctions is of order of magnitude one and that therefore the eigenfunctions are 
not exponentially large in R. The asymptotic behaviour of U,  V ,  corresponding to 
large R, is given in Abramowitz & Stegun (1964) and we note that P is exponentially 
large for y 8 0 unless B is exponentially small. It follows that 

P ( 0 ,  R) = .47~f{2("~-~) /~  (s/2a- 1 )  !} 

to leading order, and so for the symmetric modes we obtain the eigenvalues 

r n - 2 a ( l - n )  as R+oo (n=  1,2 ,  ...). (2.19) 

Similarly, the eigenvalues for the antisymmetric modes are obtained from the 
condition that U'(s/a-$, 0) = 0 and we find 

qn - a(3-2n) as R + m  (n = 1,2 ,  ...). (2.20) 

We note here that, as for IRI 4 1, the symmetric and antisymmetric eigenvalues 
interlace but they all tend to zero as R -t co. However, q1 4 0 as R -+ co and since 
q1 < 0 for R << 1 we may infer the existence of a zero of q1 a t  finite R. 
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2.2.2. x * 1 

For this case the steady symmetric flows of type I are found to have a boundary 
layer of thickness R-l near each wall and are inviscid elsewhere when R is large. We 
therefore assume an outer solution of the form F ( y ,  R) = @ ( y ,  R ) ,  where 

@(y,R) = @,,(y)+R-l@,(y)+ ... as R+co for fixed y * + l  (2.21) 

and @ satisfies the outer boundary conditions, namely 

@( - 1)  = 1 - x  to leading order and @(0) = @"(0) = 0. (2.22) 

Further, we assume that there is an inner solution of the form P(y,  R) = $+(,q,  R) ,  
where 

7 = R(1 +y), (2.23) 

$+(y, R)  = #O+(y) +R-'#:(T) + . . . as R + co for fixed y, (2.24) 

and #+ satisfies the inner boundary conditions 

$+(O) = 1-x, $+'(O) = x. (2.25) 

The inner and outer solutions are matched a t  the edge of the boundary layer by 
condition (2.11). (It was found from the matching that additional terms in R-t in the 
inner and outer solutions are inadmissible.) 

Solving (1.8) at successive orders of approximation we find that 

(2.26) 

(2.27) 

@l(Y)  = - ( 1  -x)- lY (2.28) 

and #:(y) = - (1  - x)-1 e-(l-Xh - (1  - X ) T  + (1  - X ) - l .  (2.29) 

It is apparent from (2.28) and (2.29) why a different scaled variable is required for 
the case x = 1 .  

From the results (2.26)-(2.29) we obtain 

F"( - 1 )  = -R( 1 - X) + (1 - 2x) (1 -x)-' +o( 1) (2.30) 

and F'(0) = - ( l - ~ ) - R - l ( l - ~ ) - ~ + o ( R - l )  as R+m.  (2.31) 

There is good agreement between the numerical and analytical results : for example, 
when x = $ and R = 100, the 'exact' numerical results are F"( - 1)  = -49.64308 and 
F'(0)  = -0.52407, whereas from (2.30) and (2.31) we obtain values of -50.0 and 
-0.52 respectively. 

The analysis for the eigenvalues corresponding to  this flow as R --f co follows that 
for x = 1.  Results (2.19), (2.10) still apply but with a given by a = 
(1  - x )  + (1 - x)-lR-l+ . . . . Note that, as for x = 1, q1 has a zero for x =+ 1.  Apart from 
the cases x = 0 (ZDB) and x = 1 (this study) we have not obtained numerical results 
for comparison. 

We also note that an analysis similar to the above, but applied to the spatial 
eigenvalue problem (1.19), (1.20), leads to the antisymmetric and symmetric 
eigenvalues 

ln+2(n-1),  mn+2n-l  for n =  1,2,  ... as R+co 

respectively. Note that these results are independent of x, but for x = 0 and 1 
Durlofsky & Brady (1984) state, on the evidence of their numerical results, that 
m, + 1 as R --f co. As in the analysis of temporal stability, we note that since I ,  + 0 as 
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R + co and 1,  > 1 as R + 0, i t  follows that I ,  - 1 vanishes for some finite value of R, 
at. which there is neutral stability. Indeed, as indicated earlier, if there is temporal 
neutral stability a t  a particular value of R, then there is spatial neutral stability a t  
that value of R. 

2.3. Analysis for large negative R 
The structure of the asymptotic solution is here based on the work of Terrill (1965). 
The unique steady symmetric flow of type I has a shear layer, with thickness of order 
of magnitude ( -R)- i ,  near the centre of the channel and is inviscid elsewhere as 
R + - 00. There is no fundamental distinction in this case between x = 1 and x =+ 1. 
It is convenient first to write F ( y , R )  = 9 ( S ,  E )  where 0 = < y ,  E = -</R and the 
positive parameter < will be defined later in terms of x. We next assume an outer 
solution of the form F(e,  E )  = @(O,  E ) ,  where 

@(@, E )  = @,(8) + E@~(O) + . . . as E + 0 for fixed 8 + 0 (2.32) 

and @ satisfies the outer boundary conditions 

@(1) = -(l--x),  @'(I) = x and @ ( O )  = 0 to leading order. (2.33) 

We also assume an inner solution of the form 9 ( 8 , E )  = & $ - ( & E )  where 

k = eEd, (2.34) 

as E + O  for fixed 5 (2.35) 
$-(& 4 = 4 d k )  + E m 8  + E 2  ln E + E 2 $ 3 ( 5 )  + * * .  

and & satisfies the inner boundary conditions, 

&(O) = $-"(o) = 0. (2.36) 

Finally we assume that the solutions match at the edge of the shear layer, i.e. 

lim q e ,  E )  - lim &-(c, E )  as e -+ 0. 

Solving a t  successive orders of approximation, we find that 
8+0 5-m 

Go(@ = A,sinO, (2.37) 

where A ,  = -{(1-x)2+x2<-2)~ 

and < is the first positive root of tan < = - (x-l- I)<. We note that < = i7c and 
A,  = - 1 for pure injection (x = 0 ) ,  while < = 7c and A ,  = -7c-l for the accelerating- 

(2.38) 
wall flow (x = 1). Further, A x )  = A , [ ,  

@,(8) = B, (sin 8- 0 cos e) +'sin Y e+(e cos 8- sin e) In (tan+@) + t cos e 
2AO 

(2.39) 

and 

s" , sin ede 0 
- Y1 

-sin <-a(< cos <-sin 6) In (tan ;<) + $ eos < 
B =-2A'-' 

sin<-gcos< where 1 

and 
{sin <+ (1 - x) y cos 8 Sz- 1 

cos 5- ( I  - x) sin < 
, sin8 - Y1 

A ,  
_ -  

(2.40) 
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OdO 
With x = 0, we find 

in agreement with Terrill (1965), while with x = 1, we find A,  = y, = -7c-l and B, = 

0. Consequences of these latter values are 

F'(0,R) = - 1 - 7 ~ ~ R - ~ + o ( R - ~ ) ,  F"(1,R) = o(R-'), 

and F($, R) = 7c +3c3R-' +o(R-l) as R + - co. 

For R = -2000 cxact numerical solutions compared with these five asymptotic 
results are - 1.00494 versus - 1.00493, 0.00140 versus 0, -0.31751 versus 
-0.31752, -0.00204 versus -0.00205 and 3.13364 versus 3.13384 respectively. 
When x = + we find F'(0,R) = -1.13094-1.74968R-1+o(R-1), F"(1,R) = 
2.05793 - 5.51035R-1 + o(R-l) with corresponding exact and asymptotic values at 
R = -200 of -1.12274 versus -1.12219 and 2.08562 versus 2.08548 respectively. 

We may use the asymptotic solutions obtained above to  investigate the eigenvalues 
corresponding to  type I solutions for large negative R. For general values of x we 
were able, by substituting the outer solution for F into (1.15), to find one 
eigenfunction G ( y ,  R) = cos O- cos [ with corresponding eigenvalue - x ; from the 
special case x = 1, a discussion of which follows, we may identify this eigenvalue as 
Q1. 

When x = 1 we assume an outer representation G ( y , R )  = r ( O , e )  for the 
eigenfunction, where 

r ( B , e )  =T,(B)+eT,(B)+ ... as e+O for fixed B + O  

and r satisfies the outer boundary conditions 

r ( n )  = 0, r(o) = z y o )  = o 
for symmetric modes, or 

for antisymmetric modes, to leading order. We have found the two solutions 

r(7c) = 0, rY(0) = r"(0) = 0 

&(B)  = $(1 +cosB) corresponding to s = - 1 

and 
Note that both represent antisymmetric modes. Further, we assume inner 
representations G(y, R) = y ( [ ,  e ) ,  where 

& ( B )  = g( 1 - cos 0) In +( 1 - cos 0) + ( 1  + cos 0)} corresponding to s = 1.  

y(5,e) = yo([ )  + ey1([) + . . . when s = - 1 

and Y ( [ , E )  = yo(()+elneyl(5)+ ... when s = 1 .  

Solving and matching, we find 

and 

y o = l ,  y l = - t k 2  for s = - 1  

yo  = 1,  y1 = -ak2 for s =  1. 

Comparison with numerical results leads us to identify s = - 1 with the eigenvalue q1 
corresponding to the first antisymmetric mode, and s = 1 with qz. Moreover, for 
the first antisymmetric eigensolution the asymptotic result predicts G"(0) M -in2, 
G"(1) x $7c2 = 4.93480, whereas numerical integration produces G(0)  = -4.86238, 
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G (  1) = 4.96298 and the eigenvalue -0.99527 a t  R = - 2000 ; there is good agreement 
for other properties also. For the second antisymmetric eigensolution the asymptotic 
results predict G(0)  x in2 In ( - 7~R-l) and G (  1) x 0 ; a t  R = - 2000 the former result 
becomes G(0)  x -31.85994 whilst numerical integration yields G ( 0 )  = -29.76432, 
G"(1) = -0.01854 and an eigenvalue of 1.00700; there is again good agreement for 
other properties. 

3. Numerical results 
For x = 0 many numerical results have been presented by ZDB, and in this section 

we confine attention to the case x = 1. We have computed solutions of the eigenvalue 
problem consisting of (1.15) and the boundary conditions B, G = 0 and B, G = 0, 
which correspond to  antisymmetric and symmetric modes respectively. As a 
consequence of our results we next proceed to calculations of asymmetric steady 
solutions of (1.8) subject to (1.9). In  all these calculations we have made use of a 
standard computer procedure to integrate the two-point boundary-value problem 
with ordinary differential equations for both the basic flow F and the eigenfunction 
G; the shooting method was used and the normalization for the eigenfunction was set 
as G = 1 a t  y = - 1. Certain difficulties were encountered in the computations for 
some flows -these will be mentioned as they occur in the text. 

We started the tabulations a t  IRI Q 1, taking advantage of the known analytical 
results of $2.1, and proceeded to larger values of R. For R = 0.1 our numerical 
procedure yielded q, = -98.96046, r,  = -201.56805, q2 = -394.85170, r2 = 
-596.68052, whereas the first two terms of the small-R expansions of (2.4) and 
(2.5) with x = 1 give rise to values of -98.96202, -201.56683, -394.85068, 
- 596.67968 respectively, thus showing good agreement. This tabulation of 
eigenvalues for the type I solutions was continued for larger values of IRI ; we present 
the results in figure 2. 

We describe first the case when R > 0, noting that the eigenvalue q1 increases 
through zero a t  R = R,, where R, = 132.75849. This indicates a change in the 
symmetric solutions of type I - they are temporally unstable for R > R,. It also 
appears that q, J. 0 and r, ,  q2, r2 t 0 as R --f co and we recall that the asymptotic results 
of $ 2  predicted that all the eigenvalues approach zero as R+ co. 

The change of sign of q, a t  R, suggests the existence of asymmetric solutions in the 
vicinity of R,. We have therefore investigated the occurrence of asymmetric solutions 
of (1.8) subject to (1.9) in the neighbourhood of R,: we denote the types of these 
solutions by I, and 1; (the mirror image of I, in the centreline of the channel). The 
results are presented in figure 3 (b )  and they show the asymmetric solutions forming 
two branches of a pitchfork bifurcation. The tabulation of the asymmetric solutions 
was continued to large values ( x 7500) of R ;  asymptotic properties of these solutions 
will be discussed in $5. 

We also evaluated the eigenvalues corresponding to asymmetric solutions for 
R > R,  and these are shown in figure 4. Note that since the primary flow is asymmetric 
the modes are neither symmetric nor antisymmetric but we continue to use the same 
label (a ,  or r,)  for the eigenvalue for R > R, as for R < R,. Our numerical results 
exhibit the familiar property that X, the slope of q,(R) as R t R, is related to Y ,  the 
slope of q,(R) as R JR,, by the equation Y = -2X (see Banks, Drazin & Zaturska 
1988). 

Moreover we observe that q1 and rl coalesce a t  R = 146.8; for R close to, but 
greater than, 146.8 we find a complex conjugate pair of eigenvalues with negative 
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FIGURE 2. Some antisymmetric (q,) and symmetric ( T , )  eigenvalues for type I symmetric solutions 
with x = 1. The full curves represent the real antisymmetric eigenvalues, the dotted curves 
represent the real symmetric eigenvalues, and the chain curves represent the real part of the 
complex symmetric eigenvalues. Note the different scales for R > 0 and Iz < 0. 
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FIGURE 3. The full curves represent stable steady, periodic or quasi-periodic solutions, the dashed 
curves unstable solutions and the chain curves represent the first three terms of the asymptotic 
results of $4. Values of F ( 1 , R )  corresponding to x = 1 for (a )  the symmetric solutions I. the 
asymmetric solutions I-, and 17, and the periodic solutions, ( b )  the symmetric solutions I and the 
asymmetric solutions I, and I;, and (c) the asymmetric solutions I, and I; and the periodic solutions. 
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400 
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FIGURE 4. Some eigenvalues for symmetric solutions T and for asymmetric solutions I,, I;, I.., and 
I:,. The full curves represent the real eigenvalues q,, the dotted curve8 represent the real 
eigenvalues r ,  and the chain curves represent the real part of the complex eigenvalues. Note the 
different scales for R > 0 and R < 0. 

real part. As R increases further this real part increases, eventually vanishing at 
R = R,,, where R,, = 355.5738and becoming positive for R > R,,. This zero in the real 
part indicates the existence of a Hopf bifurcation - the asymmetric solutions on this 
branch cease to be temporally stable and periodic asymmetric solutions appear for 
R > Rll. The details of the Hopf bifurcation are presented in $ 4  and we shall return 
to  such periodic solutions again in $7. On further increasing R we find that the pair 
of complex conjugate eigenvalues again become real on the I, (or I;) branch, this 
occurring a t  a Reynolds number of about 4.08 x lo3. 

We now turn our attention to the calculations corresponding to type I solutions for 
R < 0 and note (see figure 2) that  here too there is a change in the sign of q,, which 
occurs at R = R- l ,  where R-, = - 17.30715, again leading to a change in the temporal 
stability of the symmetric solutions. Thus, solutions of type I are temporally stable 
only in the range R-, < R < R,. On decreasing R below R-, we find that the 
eigenvalues T,  and r2 coalesce at R M -21.7; for R close to, but less than, this value 
we find a complex conjugate pair of eigenvalues with positive real part which appears 
to decrease as R decreases. The real eigenvalues q, and q2 also decrease with 
decreasing R and appear to approach -1 and 1 respectively, values that are 
consistent with the asymptotic results presented in $2. Further, we find that Re ( r l )  
(=  Re (r2)) vanishes a t  R x - 170, which suggests that  an unstable symmetric 
periodic solution originates here at a Hopf bifurcation. We refer in $ 7 to the possible 
consequences of this. 

From the change of sign of q, a t  R-, we again inferred the existence of asymmetric 
solutions in the neighbourhood of R-,. We therefore sought asymmetric solutions of 
(1.8) subject to (1.9) in the vicinity of R-, - we name the types of these solutions I-, 
and I:, (the mirror image of I-, in the centreline of the channel) by analogy with the 
notation for positive R ;  they are shown in figure 3(a ) .  Some care was required 
regarding the direction of integration in computation of these asymmetric solutions, 
and, indeed, also in that of symmetric solutions for ‘large’ negative values of R. 
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The tabulation of the eigenvalues q,, r,, q2 was continued into the region R < R-, 

for the asymmetric solutions L1, I:, and the results are shown in figure 4 - here too 
the modes are neither symmetric nor antisymmetric and the usual relationship 
Y = -2X  holds between the slope X of q,(R) as R 4 R-, and the slope Y of q,(R) as 
R t Rp1.  We note also that the eigenvalue q1 corresponding to  asymmetric basic flows 
increases monotonically as R decreases beyond R-, . 

However, for these asymmetric basic flows i t  is rl and q2 that  coalesce, a t  
R = - 17.46, and for R close to, but less than, this value there is a complex conjugate 
pair of eigenvalues with positive real part. With a further decrease in Reynolds 
number this real part decreases, so that these complex eigenvalues become the 
principal eigenvalues, and eventually vanishes a t  R = R-,,,  where RPll  = -55.77; for 
R < R-,, this real part is negative. The change of sign of the real part of the 
eigenvalues a t  R = Rpl1  corresponds to a Hopf bifurcation, and indicates the end of 
the temporally stable asymmetric solutions on this branch and the start of periodic 
asymmetric solutions. Some details of the Hopf bifurcation are given in $4 and of the 
periodic solutions in 97. 

4. Local bifurcation theory 
We now consider perturbations of a steady solution to  examine the bifurcations 

that occur. Thus we suppose that F = F, is a solution of the system (1.8),  (1.9) when 
R = R,  and seek to perturb this solution for small E = R-R,. It is well known that 
a series in powers of E is appropriate a t  a regular point but in powers of ei a t  a turning 
point or a t  a pitchfork bifurcation. Accordingly, assume the expansion 

F(y,  R) = F,(y) +&;(y) +eF,(y) + . . . as E -+ 0 (4.1) 

and substitute it into the problem (1.8), (1.9). Equating coefficients of terms in eo 
determines F,. Recall that if F, represents a symmetric flow then it is an odd function. 

Next we equate coefficients of ei and find that 

LF;= 0, BF;=O, (4.2) 

LU = U’”+R,(F,U’~~-F~U~~-F~U’+F;;’U) (4.3) 

where we define the linear differential operator L by 

for all well-behaved functions u. 
Comparison of system (4.2) with (1.15), (1.16) immediately leads to the conclusion 

that a t  a regular point, where s + 0 for all eigenvalues, the null function 251; = 0 is the 
only solution. Indeed, i t  is readily shown that a t  such a point the perturbed solution 
is expressible as a series in integral powers of e and is unique, and that there is no 
bifurcation. So, in this weakly nonlinear analysis of bifurcations of steady solutions, 
let us suppose that s = 0. It follows, by the Fredholm alternative, that F is not 
unique when R is near R,; for system (4.2) has solution 

F; = aG, (4.4) 

where a is a constant which is arbitrary at this stage but will be determined later. 
Proceeding to terms in el in system (1.8), (1.9), substituting for F;, and applying a 

solvability condition (see ZDB for the details) we find a t  length that 

14.5) J, +a2R, J, = 0 ,  
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1 

where 

the adjoint eigenfunction Gt satisfies 

J1 = l-lGt(F;F,-F,F;.)dy, J2 = 1:1 Gt(G'G-GG"') dy, 

LtGt = 0, BGt = 0, (4.6) 

Ltu = U ~ ~ - R ~ ( F , U " ' + ~ F ~ U " + ~ F ~ ~ ' ) .  (4.7) 

and the adjoint operator Lt is defined by 

(Note that non-trivial Gt exists because s = 0.) Equation (4.5) determines a provided 
that the second integral does not vanish. Various cases arise according to whether 
certain integrals vanish or not. We distinguish the two cases which arise in thc 
present problem. 

(i) s = 0, J1 -+ 0 and J, -+ 0. In  this case F has a power series in f (e sgn a2)i giving 
two solutions for R near R, if R > R, and none if R < R, when a2 > 0 and giving two 
solutions if R < R, and none if R > R, when a2 < 0 respectively. The bifurcation a t  
R = R, is thus a turning point. 

(ii) s = 0, J1 = 0 and J2 = 0. I n  this case it may be shown (cf. ZDB) that a = 0 or 

Gt{Fo G" - Fh G" - F i  G + F r  G + R,(GH"' - G ' H  - G"H + GrrrH)} dy 

a2 = ll , (4.8) 
Gt(GK - G ' K  - G K  + G"'K) dy 

R i L  

where the functions H and K are defined by thc problems 

LH=F;Fg-F,F;, B H = 0 ,  (4.9) 

and I X  = GIG-GG"', BK = 0. (4.10) 

If F, corresponds to a symmetric flow of type I then the root a = 0 corresponds to the 
continuation of the same flow and the other two roots to asymmetric flows ; F has an 
expansion in powers of f (e sgn a2)i so that there are three solutions F for R near R, 
if R > R, and one if R < R, when a2 > 0, and vice versa when a2 < 0. The symmetry 
of the problem in +-y shows that this pitchfork bifurcation will in general arise if F, 
is an odd function and G and Gt are even functions. 

In  summary, we expect bifurcation of steady solutions according to cases (i), (ii) 
when the principle of exchange of stabilities is valid, i.e. when s = 0 a t  linear 
marginal stability. We may expect a Hopf bifurcation there otherwise, i.e. if s = f iw, 
at R = R, for some w, > 0. Before we proceed to  investigate the latter case, however, 
note that at R = R, or Be,, where q1 = 0, the conditions of (ii) hold because both G 
and Gt are even functions, and so there is a pitchfork bifurcation. Since rl 4 0  as 
R -+ CQ for solutions of type I, we anticipate a turning point at R, = co which leads to 
symmetric solutions of type 11. We infer from Brady & Acrivos (1981) that a t  R = 
R,, where rl = 0, the conditions of (i) hold because both G and Gt are odd functions, 
and hence there is a turning point which we interpret as marking the boundary 
between flows of types I1 and I11 (although Brady & Acrivos distinguished those 
types by a change of flow direction a t  the centre of the channel). These bifurcations 
are all located in figure 1. 

Numerical calculations for asymmetric steady basic flows indicate that, as R 
increases through R,, or decreases through R-,,, Re(s) increases or decreases through 
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zero respectively : so we now investigate the possibility of a Hopf bifurcation at such 
a point, where R = iw,. Suppose that the two eigenfunctions G, G* correspond to the 
eigenvalues iw, and -iw, respectively, where we use an asterisk to denote the 
complex conjugate. Then seek weakly nonlinear solutions of period 2n/w  for small 
e = R-R,, expanding 

f(y, 7,R) = F,(Y) +&;(y, 7 )  +€f,(Y, 7 )  + . .. (4.11) 

and w = w,+e;w;+~w,+  ... as C + O ,  (4.12) 

where f(y,7+2n,R) =f(y17,R) for all 7 = wt. 

We next substitute (4.11) and (4.12) into (1.5) and boundary conditions (1.6). Note 
that, because the basic flow is asymmetric, F, is neither odd nor even here. At length, 

w1 = 0 (4.13) we find that 

and f$y, 7) = AG(y) e"+A*G*(y) ePiT, (4.14) 

where 
1 

0 = i(w, + W ,  R,) G g '  dy - gt(F, Gt''-F; G -F: G ' + F r  G) dy I', J-, 
g'( G H  - G ' H  - G " H  + G"'H) dy 

-R .s ,  

-R,IA f l  gt(Gg; - Ggr- Gg; + G"'gl + G*kq'- G*'k; - G*"k; + Cr'*"'k,) dy, 

(4.15) 

gt, g, and k ,  are defined by 

Lg' = iw,R,gt", Bgt = 0, (4.16) 

Lg, = -R,(G"'G*-G"G*'-GG*"+GG*"), Bg, = 0, (4.17) 

(L-2iw,R,d2/dy2)k, = -R,(GG"'-G'G"), Bk, = 0, (4.18) 

and H by a problem of the form (4.9). The upshot of this calculation is that the 
complex equation (4.15) gives two real equations to determine IAI2, the square of the 
amplitude off;, and w,,  which gives the leading approximation to the change of the 
frequency of the periodic solution for small e. 

We have evaluated the various integrals met in these perturbations about some 
bifurcation points. At the pitchfork bifurcation with R, = R, we find from (4.8) that 
the non-zero values of a are k0.017361. This shows that the pitchfork is supercritical, 
because a2 > 0, and also agrees well with direct numerical integrations of asymmetric 
sotutions F for small R-R, > 0. For R, = R-,, we have similarly found a = 
k0.89932i so that the pitchfork is subcritical and again agrees with the direct 
numerical calculations of asymmetric solutions near R = R-,. 

With R, = R,,, corresponding to the Hopf bifurcation of the solutions of type I, (or 
I;), where s = kO.O35577i, we have evaluated the integrals in (4.15) and obtained (AI2 
=0.000573 and w, = 0.000305. We have used these results in figure 3(c)  to sketch the 
behaviour of the periodic solutions that emanate a t  R = R l l .  With R, = R-ll we 
attempted a straightforward numerical integration of the necessary equations but i t  
appears that parasitic growth in the calculation for G' precluded an accurate 
solution : in view of the detailed results and comparisons given in ZDB and the results 
at, R, = R,, we did not proceed further. 
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In  the analysis above we have assumed symmetric boundary conditions (1.9) for 
1 .  I n  order to unfold the pitchfork bifurcations corresponding to x = 1 we 

Bf= [O, l+e:(k-Z),O, l+et(k+Z)]T, (4.19) 

where k and l are constants and E = R-8,. We regard the system with e = 0, and so 
with symmetric boundary conditions, as ‘perfect ’, and consider small imperfections 
which render the boundary conditions asymmetric when Zeg + 0. We define a ‘slow ’ 
time T = et and write f = F, + €9; + efl + . . . as e + 0. Then i t  is readily shown that 

F a t  y = 
consider (1.5) subject to the modified boundary conditions 

f &  T )  = A ( T )  G(y), 

dA 
- =a,Z+a,A+a3A3, 
d T  

where 

a, =2Gtr“(1)/R,[ GtGdy,  a2 = -aaa3, 

a3 = R, [ Gt(GK - G K  - G”K + G”’K) dy/ G t G  dy 

and a2 is given by (4.8). Thus, the steady solutions with symmetry breaking are 
governed by the cubic equation 

a3A3+a,A +a, z = 0 (4.20) 

and the pitchfork bifurcation of the perfect system with 1 = 0 is unfolded into a 
primary and a secondary flow when 1 + 0. 

We have numerically solved (1.8) subject to (4.19) when 1 = k = -0/2ef, taking 
0 = 0.0001 at R = R, and 0 = 0.01 a t  R = RPl. From (4.20) we infer that 

-1 
1 

-1 i, 

{F”( l ) - -F~( l ) )3-aa2(G”(  - 1))’ (R-R,) {F”(l)--F,”(l)) 

- OGt”’( 1 )  { G (  - 1 )}3/Ri  Gt(GK’”- G’K” - GK‘ + G”’K) d y = 0 (4.2 1 ) L 
and this is confirmed by the numerical results shown in figure 5 .  

x = xo there is a pitchfork bifurcation at R = R,, i.e. s = 0, 
We next examine the perturbation of the pitchfork as x varies. Suppose that at 

~ ~ , G ’ ( - F , - F ~ - - F ~ P ~ ) d y  = 0, I:, Gt(GG”’-GG”)dy = 0. 

Then we assume that the perturbation to x is given by 

x = X o + E X 1 + E a X 2 +  ... 
and to G by G = G,t&G;+eGI+ ... as e + O ,  

where G satisfies the eigenvalue problem (1.15) with s = 0, subject to  (1.16), P is given 
by (4.1) and satisfies the system (1.8), (1.9) and R = R, + e. Using arguments similar 
to those in the earlier part of this section, we find a t  length that 

Gt{F, Gf -Fh Gg- F,” Gh + FfGo  +R,(G, H - Gh H - G , ” H  i- G;;’H)) dy 

(4.22) Gt( Go J“‘ - GA J“ - G,“ J‘ + Gr J )  dy 
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FIQURE 5 .  Values of F”( 1, R )  for the solutions I,  I, I;, I-, and I:, at x = 1 represented by a full 
curve. The dashed curves indicate values when 0 = 0.0001 for R > 0 and 0 = 0.01 for R < 0 (see 
(4.21)) and show the unfolding of the pitchforks. 

where J satisfies 

L J  = 0, BJ = [ - 1 , 1 , 1 ,  1IT.  (4.23) 

Using (4.22), we found x1 = 0.0005855 and 0.01 1546 for the pitchforks a t  R, and R-, 
respectively. Further, for the pitchfork bifurcation a t  x = 0, R = R, =6.001353 (see 
ZDB), we found x1 = 0.133945. 

Moreover, the locus of the pitchfork bifurcations in the (x, R)-plane can be traced 
directly by numerically solving system (1.8), (1.9) concurrently with the system 
(1.15), (1.16) with s = q1 = 0. The resulting curve is shown in figure 6 as are the slopes 
(at x = 0, 1) which have been found using the values of x1 obtained from (4.22). There 
is excellent agreement between the two sets of results. We also note that the values 
of Ri, obtained here for large 1x1 agree well with the asymptotic result of the 
Appendix that R,, - -4.5118~-’ as x+ T 00. 

The unfolding -of the pitchfork bifurcations a t  R = R, and R = R-, for x = 1 
together with that for x = 0 (see ZDB) forms part of a more general picture. We note 
that the nature of the unfolding for these two values with positive Reynolds number 
i s  the same, and we use this to  present qualitatively, in figure 7, the unfolding for 
general values of x. 

5. Asymptotic results for asymmetric steady basic flows for large R 
In the previous two  sections we have established that asymmetric flows originate 

at the two pitchfork bifurcations, where R = R,, R-,. We now examine t,he 
asymptotic behaviour of these flows for large values of IRI and x = 1. 

When R 9 1 the steady asymmetric flows have boundary layers with thickness of 
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FIGURE 6. The values of the Reynolds number corresponding to pitchfork bifurcations for various 
values of x. The dashed lines represent the asymptotic result (4.22) and correspond to the slope of 
the curve. 

FIGURE 7. Perspective sketch of the values of F” (1, R) for various values of R,  x represented by full 
curves. The long-dashed curves show the unfolding of the pitchforks for various x. 
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order of magnitude R-i near each wall and a weak inviscid core which is driven by 
the boundary-layer flows. Accordingly we assume inner solutions of the form 

F(y ,  R )  = R-i$+(z, R ) ,  where z = (1 -y)Ri (5.1) 

and F ( y ,  R )  = R-i$+(q, R ) ,  where y = ( 1  +y)Ri, (5.2) 

$+(z, R )  = $;(z) + R-i$t(z) + . . . , 
$+(y,R) =$;(~)+R-i$:(q)+ ... as R + m .  (5.4) 

$+(O) = $+(O) = $+’(O) + 1 = $+’(O) - 1 = 0. 

and write (5.3) 

The functions $+ and $+ satisfy the boundary conditions 

(5.5) 

Because the flow in the inviscid core is weak we assume that $+’(z) + 0 as z --f co and 
$+’(q) + O  as q + 00. I n  the inviscid core, in order to match with the boundary layers, 
the solution is assumed to take the form 

(5.6) F(y ,  R )  = R-%(y, R ) ,  

where @(y, R )  = @,(y) + R-kPl(y) + . . . as R + 00 ; (5.7) 

the boundary conditions are determined via the matching procedure. 

$ ; ( x )  = - 1 +e-z, (5.8) 
We find that 

$of(y) = 1 - e-7, 

@o(y) = C, cos (iny + %I), 

(5.9) 

so that the boundary conditions for djo are Go( 1)  = - 1 ,  @,( - 1 )  = 1 .  Then we may 

(5.10) 
solve for @, to obtain 

where C, sin E ,  = 1 .  (5.11) 

Proceeding to the next order in the inner expansions we find firstly that $: and $; 
are the same function, and then, a t  length, that 

(5.12) 
@ l ( z )  = nCocos‘oe-z[ (1 +en){[exp(J:---dx)du}do. 3 + ePx 

8e 1 +ex 

We note that the present analysis does not determine the values of the constants C, 
and 6 ,  but merely demands that they satisfy the condition (5.11). Consequences of 
the analysis are that 

+ o(R-i)} (5.13) 

(5.14) 

We have evaluated 2e~-’{F”( 1)  +F”( - 1)) and - 2Rk1F’(0) using values obtained 
from the exact numerical integration of the system (1.8), (1.9) for some large values 
of R and, using the leading terms displayed in (5.13) and (5.14), calculated the values 
of C,, e0 to which they correspond. We find that for R = 6400, C, = 2.0312 and E ,  = 
0.53869, for R = 7200, C, = 2.1008 and e0 = 0.51753, and for R = 7240, C, = 2.1043 
and so=0.51667. We do not guarantee the accuracy of all the figures, and it is 
possible that C, = 2, 6, = in = 0.52360. 

Having determined the analytic behaviour of the solutions of type I, for large R to 
the order shown, we proceed to investigate the associated eigenvalue problem as 
defined by (1.15) with boundary conditions (1.16). 

1 XC, cos B0 
F ” ( f 1 )  = R i  f l+R-5  

and F’(0) = -@-$rC,sine,+o(R-~) as R-t  00. 

4e i 



Transition to chaos in two-dimensional channel $ow 47 1 

We first integrate (1.15) to obtain 

G" + + R(FG"- W'G + F"G) = RsU, (5.15) 

where y is the constant of integration. If we now replace F ( y ,  R )  by its leading outer 
term R-ICocos ( $ ~ ~ y + e , )  and neglect the viscous term G ,  we obtain the equation 

cos Or" + (2 sin B -p)  r" - cos 0r = -4y0/x2C0, (5.16) 

where ,ii = 2Rb/xCo,  yo = yR-4, B = &ny+eo and r(0) = G(y). We may immediately 
conclude that if we find finite values for ji then s+O as R+ 03 for all eigenvalues. 
Although we have not solved (5.16) in the general case we have obtained the solution 

r(e) = 2yo cos(B-so), p =  0, 
7l2Co cos Eo 

(5.17) 

which satisfies the outer boundary conditions r ( + x  + eo) = r( --in + eO) = 0. A conse- 
quence of this solution is that G(0,R) = 0 to leading order, a result which is 
confirmed by our numerical results, as indeed is the eigenvalue p = 0. We have not 
continued the matching to high order. 

When -R 4 1 it is convenient to write R = -p .  The steady asymmetric flows have 
boundary layers whose thickness is of order of magnitude p-4 near each wall, and are 
inviscid elsewhere when p is large. We assume an outer solution of the form 

F(y,R) = @ ( Y , P ) ,  (5.18) 

where @(y,p) = @o(y)+p-i@,(y)+ ... as p+00 for fixed y + k l ,  (5.19) 

and @ satisfies the outer boundary conditions 

@ ( f l )  = o  (5.20) 

to leading order. We also assume that there are inner solutions of the form 

F(y, R)  = p-$F(z, p )  where z = (1 - y) pi, (5.21) 

$-(z,p) = y+;(x)+p-$h;(z)+ ... as p+ 03 for fixed z,  (5.22) 

and y+- satisfies the inner boundary conditions 

$.-(O) = 0, y+-'(o) = - 1,  (5.23) 

and F(y,R) = p-@-(q,p), where q = (1  +y)$, (5.24) 

# - ( ~ , p )  = $;(~)+P-;#;(T, I )  + ... as p+ co for fixed T,I (5.25) 

and $- satisfies the inner boundary conditions 

$-(o) = 0, #-'(o) = 1. (5.26) 

These inner and outer solutions are matched a t  the edges of the boundary layers. 
Solving a t  successive orders of approximation we find 

O0(y) = - 2x-1 cos &ny, 

y+&) = - 2  

(5.27) 

(5.28) 

and #; satisfies the differential equation 

16 

(5.29) 
PLM 212 
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subject to  the boundary conditions &(O) = &'(O) - 1 = 0, &'(7) +. - 1 as 7 + 00. The 
problem for #I; has been solved numerically and it is found that 

$;"(O) = -1.328817, &(7) = - q + S + o ( l )  as 7-f 00, (5.30) 

where 6 = 1.96612. Continuing with the matching to higher order we obtain 

@,(y) = - $3 sin ijny + 8n-l (tny sin +ny + cos ijny), (5.31) 

$1(1; = $25; = 0. (5.32) 

Moreover, the next term in the outer expansion is O(p-l In p ) ,  and the next terms in 
the expansions for $- and #- are also of the same order of magnitude, so that we 
write 

@ = @,, +p-i @ 1  + p - l  In p @,, +p-1@,  + . . . , 
$- = $, +p-i$; + p - l  In p $;, +p-'$, + . . . , 
$- = $ ; + p - a ~ ; + p - l I n p ~ ~ , + p - l ~ , +  ... as p+00. 

We find @,,(y) = A,, sin$ny+B,,(ijnysin+ny+ cos$~y), (5.33) 

+'21(z) = 0;  (5.34) 

since q5; is known only numerically, numerical integration is necessary to solve for 
$;,. The constants A,, and B,, are related by A,, +BnB,, +an = 0. 

We have compared the predictions of these asymptotic results with those from 
exact numerical integration of the system (1.8), (1.9). The asymptotic results 
indicate that 

(5.35) F"( - 1, p )  = - 1.328 81 7 pi + p-a In p &'(0) + p-i$;"(O) + . . . , 
~ " ( 1 , p )  = p - i $ i r r ( o ) + . . .  as p - t o o .  (5.36) 

Comparison with results from exact numerical integration with p = 900 and 1600 
indicates that $;"(O) = 0. Moreover, when $;[(0), &"(O) are evaluated by using exact 
numerical results for p = 900, 1600 and a truncated form of (5.35), we find that 
$;:(O) = 0.16224, &"(0) = 5.58705. With these values we find that (5.35) predicts 
values of - 66.352496 and - 79.656378 for F"( - 1 )  a t  p = 2500, 3600 whereas exact 
numerical integration yields - 66.352 163 and - 79.655661 respectively. We may 
also infer from the asymptotic form that 

F(0)  = -2n-'+0.625835p-t+p-l InpB,,+p-'@,(O)+ ..., (5.37) 

( 2 / 7 ~ ) ~ F " ( 0 )  = 2n-1 +0.625835p-k+p-'InpB2, 

+p-'( 2/7~)~@:(0)+ ... as p + 0 0 .  (5.38) 

Using each of these forms with resu1t)s from the exact numerical integration a t  p = 
900, 1600 to determine the coefficient B2,, we find excellent agreement. Thus the 
comparison of the asymptotic and numerical results gives conviction that the 
analysis is valid. 

In order to  investigate the eigenvalues corresponding to large negative R we replace 
F in (5.15) by its leading outer term - Z ~ ~ C - ~ C O S + K ~  and neglect the viscous term G 
to obtain the equation 

cos 0-T" + (s + 2 sin &)c - cos 0 - C  = 2y/Rn, (5.39) 

where 0- = Sny, f-(0-) = G(y). We have found one solution that leads to 

G(y) = - ( Y / R ~ c )  COS+TZJ, 
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which satisfies the outer boundary conditions and has corresponding eigenvalue s = 
0. However, with the limited number of eigenvalues computed we have been unable 
to verify this analytic result. 

6. Three-dimensional temporal stability 
We next investigate the linear stability of accelerating-wall channel flows to three- 

dimensional disturbances with a view to determining whether such perturbations 
could destabilize a flow which is stable to two-dimensional disturbances. Write u = 
u,+u,, p = p , + p l ,  where u, = (xF’, - F ,  0) and p ,  represents the unperturbed 
pressure, and linearize the momentum equation for small perturbations u,, p ,  to 
obtain 

-+ at 
U, *VU, + u,-VU, = - Vpl + R-lV2u,. (6.1) 

In  order to satisfy continuity, 
v-u, = 0. (6 .2)  

The boundary conditions are u1 = (u,, vl, w,) = 0 a t  y = & 1. Now assume that the 
disturbance is of a similar form to the undisturbed flow, i.e. that 

u, = z q y ,  2, t ) ,  v1 = V(y, 2, t), w1 = m(y, 2, t ) ,  

It follows from the momentum equation that p ,  = z2pl(t)+pl,(y,z,t) for some 
functions pl, pll. We next use the method of normal modes and write 

(G, V, m) = est+ikz (Z;(y), 8(y), &(y)). 

The momentum equation requires that p,(t)  E 0 and pl,(y, z, t )  = eSt+ikz$(y) for some 
function $. Note that since pl is identically zero we are restricted to considering only 
antisymmetric perturbations of this form. With these assumptions the equations 
become 

d+8’+ik& = 0, 
with boundary conditions 

Z;(kl) = 6 ( & 1 )  = & ( & 1 )  = 0. 

We examine first the case when IRI -4 1 by writing Rs = -u and find that 

u+k2+nzn2 as R+O for n =  1 ,2 ,  .... 
Therefore, for all x, if (R( 4 1 then u > 0 for all real k and so such channel flows are 
more stable to three-dimensional disturbances of similarity form than to two- 
dimensional ones. 

For R $- 1 a similar analysis to that in $2 leads to 

qn = a ( 3 - 2 n ) - k 2 R - 1 + ~ ( R - 1 )  as R+oo ( n =  1 ,2  ,...) 

indicating, when compared to (2.20),  again that these three-dimensional disturbances 
are more stable than two-dimensional disturbances of the same form. 

For -22 >> 1 a substitution of the appropriate asymptotic form for F into 
(6.3)-(6.6) does not lead to a decoupling of the system and therefore no simple 
conclusions may be drawn regarding the eigenvalues. 

16-2 
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R 

- 55 

- 50 

- 35 

- 30 

- 25 

- 20 

- 18 

- 17 

- 10 

20 

50 

100 

130 

150 

200 

250 

300 

350 

F ( -  1, R) 

- 8.98923 

-8.461 70 

- 6.58247 

-5.78651 

- 4.8 13 44 

- 3.43568 

-2.505 16 

- 1.687 82 

-2.18149 

-4.71321 

- 6.954 1 2 

- 9.85364 

- 11.27931 

- 12.16722 

- 14.06881 

- 15.74657 

- 17.26686 

- 1866655 

F ( 1 , R )  

0.04338 

0.05305 

0.11872 

0.17437 

0.28773 

0.609 06 

1.02658 

1.687 82 

2.181 49 

4.71321 

6.954 12 

9.85354 

11.27931 

12.033 30 

13.84533 

15.48190 

16.97406 

18.35138 

t 

2400 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

600 

600 

600 

600 

600 

600 

600 

600 

600 

(2400 

fvv(-L4R) 

-8.98904 

-8.46151 

-6.58239 

-5.78644 

-4.81341 

-3.43564 

-2.50513 

- 1.687 82 

-2.18151 

-4.71321 

- 6.954 15 

-9.85356 

-11.27909 

-12.14817 

- 14.06806 

- 15.74502 

- 17.26786 

- 18.66990 

- 18.67277 

f,,U > 4 R )  

0.04343 

0.05305 

0.11872 

0.17437 

0.28775 

0.609 08 

1.02658 

1.68784 

2.181 51 

4.7 1321 

6.95412 

9.85357 

11.27990 

12.13507 

13.844 92 

15.48033 

16.97382 

18.38888 

18.35490 

TABLE 1. Comparison of numerically calculated stable steady stolutions of the system (1.8), (1.9) 
with unsteady solutions of the system (1.5), (1.6) after quite long times of integration 

7. Initial-value problem 
We next return to the initial-value problem (1.5), (1.6) forf(y, t, R) with an initial 

condition of the form f(y,  0, R) =f(y) for given R, where f is assumed to be well 
behaved and to satisfy boundary conditions (1.6). The case = 0 has been considered 
by ZDB and we confine attention here to  x = 1 .  We recall that when x = 0 the flow 
is driven by suction or injection and when x = 1 the flow is driven solely by the 
uniform acceleration of the channel walls. 

In the numerical work of this section we have first takenf(y) = -n-l(sgnR) sinny 
for the initial condition, although, once a numerical solution was found for 
reasonably large values of t at a particular Reynolds number, the final result was 
taken as the initial condition at a neighbouring Reynolds number. We are interested 
here in the properties of ‘developed’ flow and pave not specifically considered the 
development of the flow for various functions f. 

For the numerical integration of the nonlinear diffusion equation (1.5) we have 
used the same computer procedure (see Berzins & Dew 1989) as that used by ZDB. 
With specimen values of the Reynolds number we reproduced accurately, a t  finite 
values of t ,  the steady solutions, symmetric and asymmetric, that were discussed in 
$3. In  table 1 we give detailed comparisons for -55 < R < 350 - we recall that for 
R = R-ll - 0 and for R = R,, + 0 our linear and weakly nonlinear results predict 
periodic flows, and further that  for R,, < R < R-, and for R, < R < R,, the stable 
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steady flows are asymmetric. It will be noted from the table that in most cases the 
time of integration was not long enough to achieve convergence to a steady solution. 
It should also be noted that, in spite of the success of these tests, the computer 
procedure was designed for general use, not to solve our particular problem, So some 
of our numerical results for chaotic solutions, which are notoriously difficult to 
compute accurately, may not be as accurate as we would wish. However, we are 
confident of the qualitative results presented here. 

From the numerical results of this section it is possible to detect, for R, < R < 
R,, and R-,, < R < R-,, the oscillatory behaviour of fyy(l, t ,  R) as t increases with R 
fixed, and, for R-, < R < R, the monotonic behaviour - all of which is consistent 
with the eigenvalue results reported in $3.  

We have continued the calculations for values R a t  which we expect periodic 
solutions and have also proceeded to values beyond. It will be convenient to discuss 
the cases when R < R-,, and R > R,, separately in the two subsections that follow. 
We present only representative results obtained: we do this by plotting the phase 
plane of the state variables fyy( - 1, t ,  R) and fyy(i, t ,  R )  for the gross features and 
some Fourier spectra for the finer detail. 

In  interpreting the dynamics of the unsteady solutions it is helpful to regard each 
solution as an orbit in an infinite-dimensional phase space and examine the orbits 
geometrically. Each steady solution, of type I, I,, I;, I-,, I:,, I1 or 111, is represented 
by a fixed point in that space for those values of R for which it exists ; it is convenient 
to denote that point simply by I, I,, I;, I-,, I:,, I1 or 111 respectively. For the values 
ofR of greatest interest, such a point (if it exists) is unstable and therefore a repellor, 
the neighouring orbits being governed by the point’s linear stability characteristics, 
which we have described earlier. For this reason it is important to recognize whether 
the fixed point is a saddle point, a saddle focus or a bifocus. Likewise each periodic 
solution is represented by a closed orbit in phase space, the orbit attracting or 
repelling neighbouring orbits according to whether the periodic solution is stable or 
unstable respectively. Glendinning (1988) has reviewed the geometrical theory of the 
onset of chaos after the breaking up of homoclinic orbits; in particular, he considered 
systems with the same symmetry as the system (1.5), (1.6). His review is the 
background to our geometrical interpretation of our numerical results. 

7.1, R > R,, 
The results of this subsection have certain properties in common with the results 
of ZDB. We begin by plotting fyy(i, t ,  R) versus fuy(-l, t ,  R) with R = 357 
( = R,, + 1.4264) for values of t between 2400 and 4400. The curve spirals outwards 
anticlockwise as t increases with no appearance of convergence - wgpresume that the 
Floquet exponent governing the approach to the periodic solution is complex with 
small, but negative, real part. This spiralling recurred with R = 370, but with R = 
400 there was convergence to a periodic solution. This follows a similar pattern to that 
found by ZDB except that near the Hopf bifurcation the decay to the periodic 
solutions was much more rapid. With R = 1200 we find some remarkable changes in 
the phase plot as shown in figure 8 (a).  The most obvious feature is that the orbit has 
split into two, with the line of ‘symmetry’,fyy(l, t ,  R) +fyy( - 1, t ,  R) = 0, being the 
common part : the orbit to the left of this line is traversed anticlockwise around the 
unstable asymmetric solution I;, and that to the right of the line is traversed 
clockwise around I,. The points I,, 1; are indicated by crosses, and the saddle point 
I by a plus sign. We note that the flow corresponding to a point in the phase diagram 
along the ‘symmetry’ line is indeed symmetric but not of type I. The Fourier 
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34 - 

8 33- 
f! 

4 32- 

r -  

e v 

0 0.004 0.008 0.012 0.016 0.020 
Frequency 

30 I 
- 35 - 34 - 33 - 32 -31 

/;,,A - 1. t ,  12001 

FIGURE 8. (a) Phase plane off,,(l,t, 1200) and!,,( - 1, t ,  1200) with t as parameter. The unstable 
steady solutions I,, I; are indicated by crosses, and I is indicated by a plus sign. (b) Logarithm (to 
the base 10) of the square of the modulus of the Fourier transform of time series off,,(l, t ,  1200) 
versus frequency. 

spectrum and the phase plot indicate chaos. Another noteworthy feature is the 
appearance of a cusp near (-34.6, 34.3). The plot is taken from the integration 
starting at t = 4000 and ending at t = 37000, but this time interval was split into 
subintervals and the integration was restarted repeatedly. During integration over 
one subinterval this orbit involving the cusp was produced and could be reproduced 
on repeating the calculation, although the cusp could be eliminated by working to 
greater accuracy. We shall interpret this later. 

For R = R,, + O  we have found (from the results presented in $3) that the period 
of the motion is about 180. The period increases with R (see $4) and is about 250 at  
R = 400. With such large periods the determination of the frequency via the Fourier 
coefficients requires very long ranges of integration. We have contented ourselves 
here with showing in figure 8 ( b )  the Fourier spectrum corresponding to R = 1200 ; the 
spectrum is further evidence for the existence of chaos. 

So, to summarize the numerical results, we find for R = R,, + 0 evidence that the 
time series of state variables are sinuous and that as R increases the development of 
the flow is similar to that found by ZDB, resulting in chaos. However, in contrast to 
their results, the eigenvalues of type I flows all tend to zero as the Reynolds number 
tends to infinity (see §2), resulting in neutrally stable flows as R-tco. Prom the 
asymptotic analysis of $2 and the numerical results of $ 3  we infer that - q l / r l  > 1 
for the solutions of type I when R is sufficiently large, and so the theory of 
Glendinning (1988) suggests that the onset of chaos follows the formation of two 
homoclinic orbits : as R increases beyond R,, the limit cycles that spring from I, and 
I; grow until they approach the solution I in such a way that their perturbations are 
proportional to the stable first symmetric eigenfunction G,, i.e. approach in the 



Transition to chaos in two-dimensiona,l channel flow 477 

direction of G,, and leave in the direction of the unstable first antisymmetric 
eigenfunction G,. 

It was found convenient by ZDB to express 

f(Y,  4 4  = J T ? / , R ) + X ( t )  G,(y,R) + Y(t)  G,(y,R)+Z(t) G,(Y,R) (7.1) 

as a crude approximation, where B"') is the solution I. This simple model explains 
many qualitative features of the dynamics. The limit cycles which lose stability 
persist, presumably, although their positions are unknown, and influence the orbits. 
We hypothesize that it is because of such unstable limit cycles that the cusp in figure 
8 ( a )  appears as the projection of a smooth orbit in a higher-dimensional space onto 
the phase plane. 

We recall that we have calculated for the basic solutions I,, I; only the first 
two eigenvalues (ql and r , )  and determined the position (R = Rll) at which Re (q,) 
(=  Re ( r , ) )  vanishes so giving rise to a stable periodic solution a t  a Hopf bifurcation. 
We suspect that the third and fourth eigenvalues (qp and r2)  may coalesce and become 
complex, and the vanishing of their real part (at R > Rl l )  would imply that an 
unstable periodic solution originates a t  a Hopf bifurcation. 

7.2. R < R-,, 
We begin this subsection by plotting the phase plane of fy,(l, t ,  R )  versus 
fyy( - 1, t ,  R )  in figure 9 for R = -56 ( x R-ll -0.23) and - 70 with 1500 < t < 4500. 
The flow is periodic, and on close inspection we found that the frequencies are 
consistent with the imaginary part of the eigenvalue at R-ll. Periodic flows persist 
until R = R(l), x -74.0, when the period doubles; this is exemplified by figure 10, 
where the limit cycle for R = - 75 is shown. Decreasing the Reynolds number further 
we find a second period doubling, as can be seen in figure 11, where the limit cycle 
for R = -78 is shown; this change of period takes place a t  R = Rt2), x -77.8. With 
R = -80 we find evidence that multiple period doubling has occurred. After some 
trial and error we found the next value, R(3) x -78.5, of R a t  which the period 
doubles. We note that the ratio of the differences (R'2)-R(1))/(R(3)-R(2)) x 5.3. In 
view of the results for R = -80 and the closeness of 5.3 to Feigenbaum's universal 
constant, 6 = 4.66920, we anticipate an infinite sequence of period doubling which 
culminates in chaos at R = R(m), w -78.7. (The values of R(n) here are unlikely to be 
accurate to three significant figures.) For R = - 80 we note that there appears to be 
a limit cycle which is starting to show signs of a symmetric component along the line 
fyy( 1, t ,  - 80) +f,,( - 1, t ,  - 80) = 0 in the phase plane,. 

The limit cycle for R = - 85 is shown in figure 12 and suggests the influence of two 
repellors, one corresponding to the symmetric solution I, and the other to the 
asymmetric solution I-,. We note that the symmetric part of the orbit is becoming 
more pronounced. In looking at this figure and other diagrams for smaller values of 
R it should be remembered that for solutions I the first eigenvalue s1 ( = q,) is 
negative but s2 ( = r,)  is complex with s3 = sz (= r2)  and Re(s,) > 0, and also that 
the complex eigenfunction G, is an odd function. The existence of such complex 
eigenfunctions explains why the orbit overshoots the saddle focus I and then returns 
- as will be seen later, this is even more pronounced for R < - 90. For the asymmetric 
solutions I-, also, the first two real eigenvalues coalesce and form a complex 
conjugate pair of eigenvalues at R x -85; this accounts for the spiral of the orbit 
near the point (-2, - 11) corresponding to I-,. On the basis of the eigenvalues shown 
in figure 4 it appears that I-, is a saddle focus. The figure for R = - 85 is too involved 
to infer the presence or absence of chaos. 
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-7 - 5  - 3  - 1  I 

,/-,,A - 1 1  1, m 
FIGURE 9. Phase planes of fY,(l,t, -56) and f,,( - l , t ,  -56), and of fyy(l,t, -70) and 
f,,( - 1 ,  t ,  - 70) with t as parameter. In each case the flow is periodic. The unstable steady solution 
I-, is indicated by a cross for R = - 56 and - 70. 

I +  
- 1  I 1 

- 10 - 7  -4  - 1  2 

f""(- 1 3 1 ,  -75) 

FIQURE 10. Phase plane off,,( 1,  t ,  -75) and f,,( - 1, t ,  -75) with t as parameter. 
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FIGURE 11.  Phase plane off,,( 1 ,  t ,  - 78) and fuw( - 1, t ,  - 78) with t as parameter. 
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- 5  
-- 19 - 14 -9  - 4  1 

/;,,,( - 1. t ,  - 85) 

FIGURE 12. Phase plane of f,,( 1 ,  t ,  - 85) and fvv( - 1 ,  t ,  -85) with t as parameter. 
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FIGURE 13. Phase plane off,,(l,t, -90) andf,,( - l , t ,  -90) with t as parameter. 

With R = - 90 the plot of the phase plane shown in figure 13 looks less complicated 
than that for R = -85 but the braiding that is now clearly visible in certain regions 
is highly suggestive of chaos. However, our interpretation, in terms of the steady 
solutions I and I-, and their stability characteristics, is still applicable. We note that 
because the real part of the unstable eigenvalue of the asymmetric steady solution 
is decreasing, the orbit is being repelled more vigorously near the point I-, ; the same 
arguments apply near the saddle focus I although the unstable eigenvalue of this 
steady solution is of course real. The plot for R = - 95 shown in figure 14 shows a far 
'cleaner' orbit with no braiding and a comparatively simple limit cycle. 

We show results for R = - 100 in figure 15. We see that the orbit of the attractor 
has developed some parts on the 'other side' of the symmetry line defined by 
fa lJ  - 1 ,  t ,  - 100) +fJ 1, t ,  - 100) = 0. Further, we note that the figure is by no means 
symmetric (even allowing for the different scales) and that there is the suggestion of 
yet more braiding. At R < - 100 we anticipate yet more complications if only 
because of the origin of unstable symmetric periodic solutions a t  the Hopf 
bifurcation a t  R x -170 (see 53). 

We complete the presentation of the numerical results of this section by displaying 
in figures 16 and 17 the Fourier spectra for R = -70, -74, -78, -78.7 and - 100 
corresponding to some of the critical regimes. The last figure is highly suggestive of 
chaos for R = - 100. 

These results seem too complex to be explained by a single simple geometrical 
model. It is, however, clear that  the route to chaos is by period doubling, as found 
by Feigenbaum for one-dimensional maps and described by Glendinning (1988) for 
differential systems, although we have not identified any solution of period three, five 
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etc. for R < R(m). Indeed, many details, e.g. the ‘windows’ of periodic and chaotic 
solutions for - 100 < R < - 79, remain to be carefully elucidated. 

Note that the orbits go close to both the fixed points I and I-, for - 100 < 
R < -90, so we now need a pair of equations, analogous to (7 .1) ,  to model the 
attractor piecewise in this regime. To this end we write 

4 

f(y, t ,  R) = F‘”(y, R) + X T f ) ( t )  Gf)(y, R) 

f(y, t ,  R) = P-~)(Y, R) + X !Z’t-l)(t) Gf-1) (Y, R), 

(7 .2)  

(7.3) 

n-1 

4 

and 

where GLN)(y, R) is the nth eigenfunction for the flow of type N with solution 
F(”(y,  R), and TLN)(t) will behave like exp (siN)t)  when the solution is close to that of 
type N .  We note that GL’) and GF) together with their associated eigenvalues are 
complex (see figure 2) and this is mirrored in the phase plots for R = - 90, - 95, and 
-100 near the saddle focus I. Similarly, since Gil-l), Gf-1) and their associated 
eigenvalues are complex and, further, are unstable (see figure 4), we see spirals 
around I-,. 

n-1 

8. Conclusions 
The foregoing sections describe a rich variety of bifurcations for a class of exact 

solutions of the Navier-Stokes equations. In  particular, for x = 1, the onset of chaos 
when two homoclinic orbits break up as R increases and the Feigenbaum route to 
chaos as R decreases are described in $ 7 .  The routes in which there is a sequence of 
bifurcations from symmetric steady, to asymmetric steady, to periodic, to chaotic, 
to other periodic, to chaotic solutions etc. are new in detail and as being among a 
class of exact solutions of the Navier-Stokes equations. We contrast this behaviour 
to  that encountered when x = 0 corresponding to the porous channel (see ZDB) in 
which only the first route exists - for R < 0 the symmetric flow is found to be stable 
to perturbations of the form (1.14). 

The above are accordingly possible routes to chaos of real flows. However, various 
practical points must be borne in mind. First, although accelerating walls have a long 
history in the theory of viscous flow, it is not feasible to design a channel with two 
accelerating walls ; the construction of even a single accelerating wall presents 
considerable difficulty (see $1) so the only likely laboratory realization is ‘for the 
special case (x = 0) of fixed channel walls. Even then an experiment would 
necessarily be in a channel of finite span and length, so that the assumed similarity 
solutions would at best be only approximations to real flows along a wide long 
channel. However, the results of $6 show that a t  least some three-dimensional 
disturbances are more stable than two-dimensional ones. Further, because i t  occurs 
a t  such low values of the Reynolds number, so that for a channel of moderate length 
the fluid velocities are small enough to be realizable, the route to  chaos may be 
observable and thereby offer a rare insight into transition to turbulence. 

This paper has been chiefly concerned with the case of symmetric boundary 
conditions, which is governed by the two dimensionless parameters, x and R. 
However, we have briefly considered asymmetric boundary conditions (4.19), and it 
should be recognized that with different values of uniform suction at ,  and acceIeration 
of, each wall of the channel the similarity solutions are governed by four independent 
dimensionless parameters. Two special cases are currently being investigated : (i) 
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S. M. Cox is examining the case when the walls of’ the channel are fixed but with 
unequal suction there; and (ii) P. Watson is examining the case when the flow is 
driven by impermeable walls accelerating asymmetrically. Consideration of the 
general case must await a future occasion. 

We are grateful to Dr Martin Berzins for making available to us the algorithms to 
solve the nonlinear diffusion equation of $7,  and E.B.B.W. to the SERC for the 
award of an Advanced Course Studentship. 

Appendix 

and R = - x-lR so that the system (1.8), ( 1.9) becomes 
For the special case V + E h  = 0, equivalent to infinite x, we may write F = -xF 

p + R ( j q P L P % ” )  = 0, (A 1) 

(A 2) BF = [(l-x-’), -1 ,  - ( l - ~ - ’ ) , - l ] ~ .  

In the limit as x + - co this system has the simple solution P(y, R) = - y, for all R, 
a solution which clearly represents a symmetric flow of type I .  

Substituting this analytic result into the eigenvalue equation (1.15) leads to the 
general solution 

G = b, y + b , +  exp (iRyz){b,  V(s-$,Riy)+b,  V(s-$,Riy)} ,  (A 3) 

where U,  V are the parab2lic cylinder functions and s = -x-ls. (In fact the Hermite 
polynomial G = H3-g{(@)Sy} satisfies (1.15) when 3-8 is a non-positive integer, and 
the third and fourth solutions of (A 3) give this polynomial for integral s < 1. )  We 
note in particular that g = 0, b, = b, = 0 corresponds to the antisymmetric mode a t  
marginal stability when R = R,, and that application of the condition G (  1 ,  R,) = 0 
and use of the recurrence relations for the function I.‘ gives V( -g, Ri) = 0. This 
condition identifies the value of I? at the pitchfork bifurcation: from tables 
(Abramowitz & Stegun 1964) we find @ x 2.124. Thus R, - - 4.51 12-l as x --f - co. 
Direct numerical solution of the eigenvalue problem with F(y, a) = - y gave the 
result R, = 4.5118 when s = 0, i.e. R, - -4.5118~-’ as X + - C O .  

When boundary conditions (A 2) are applied to the general solution (A 3) the 
eigenvalues s(R) may be determined in principle, but in practice it is easier to identify 
the values of R corresponding to integer values of 8. 

We note that F(y, R) = - y  is also an exact solution of (A 1) subject to asymmetric 
boundary conditions including, for example, F ( p )  = - p ,  F’(p) = F(1) = F’(1) = - 1. 
Substituting this exact solution into the eigenvalue problem (1.15), (1.16) and using 
the methods of $2.1, we have found the behaviour of the eigenvalues for small R. For 
general values of R, (1.15) has a solution of the form (A 3) but we have not found an 
analytic solution of the whole eigenvalue problem. Moreover, the analysis suggests 
that there are no real eigenvalues as R+ CO. Also it appears that the pitchfork 
bifurcation for p = - 1 is unfolded into transcritical bifurcations for small 1 + p  > 0. 
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